BIOIMAGING 2018 Best Student Paper Award - Bashir Dodo

We are pleased to announce that Bashir Dodo’s paper “Graph-Cut Segmentation of Retinal Layers from OCT Images” has won the BIOIMAGING 2018 Best Student Paper Award.

Below is the abstract and full list of authors.

ABSTRACT
The segmentation of various retinal layers is vital for diagnosing and tracking progress of medication of various ocular diseases. Due to the complexity of retinal structures, the tediousness of manual segmentation and variation from different specialists, many methods have been proposed to aid with this analysis. However image artifacts, in addition to inhomogeneity in pathological structures, remain a challenge, with negative influence on the performance of segmentation algorithms. Previous attempts normally pre-process the images or model the segmentation to handle the obstruction but it still remains an area of active research, especially in relation to the graph based algorithms. In this paper we present an automatic retinal layer segmentation method, which is comprised of fuzzy histogram hyperbolization and graph cut methods to segment 8 boundaries and 7 layers of the retina on 150 OCT B-Sans images, 50 each from the temporal, nasal and centre of foveal region. Our method shows positive results, with additional tolerance and adaptability to contour variance and pathological inconsistency of the retinal structures in all regions.

Bashir Isa Dodo, Yongmin Li, Khalid Eltayef and Xiaohui Liu.

Congratulations again!