
Constraint Satisfaction Problems and Constraint Programming

Gabriel Scali

Brunel BSEL/IDA seminars, 6 November 2019



Constraint Satisfaction Problems



Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a tuple (X,D,C) where:

• X = {x1, x2, . . . , xn} is the set of variables

• D = {d1, d2, . . . , dn} is the set of domains (di is a finite set of potential values for xi)

• C = {c1, c2, . . . , cm} is a set of constraints restricting the values that the variables can 

simultaneously take.

Values need not be a set of consecutive integers, they just need to be a discrete set.

A solution to a CSP is an assignment of a value from its domain to every variable, in such a way that 

all constraints are satisfied at once.

Just any solution vs all solutions vs a good/optimal solution.

In this last case, we have a constrained optimisation problem (COP), defined by some objective 

function of some (or all) of the variables



Complexity of CSPs

CSPs are in general NP-complete. 

This easily follows by a number of other NP-complete problems being expressible as constraint 

satisfaction problems: for example the propositional satisfiability (SAT) problems.

Research has shown that some subclasses of CSPs with certain properties are polynomial if they 

follow certain restrictions. For example an instance where all the domains are binary and all the 

constraints are binary, can be solved in polynomial time.

COPs are harder than their corresponding CSPs: knapsack and TSP are reducible to COPs.

Puzzles such as the n-queens problem or sudoku are often used as toy examples.



Why are CSPs and CP interesting?

CSPs and COPs appear in all sorts of fields: scheduling, planning, resource allocation, transport and 

logistics, network management, economics, biology and many more.

Unlike it happens for other areas of AI, this is one where computers, while struggling, are still much 

better than people!

In the holy wars between different programming paradigms, declarative and constraint programming 

are often unjustly neglected - but there are strong arguments in favour of them, especially in terms of 

the software engineering practices they enable.



Solving CSPs : backtracking

Finding a satisficing assignment is a search problem on (possibly infinite) tree.

The simplest CSP-solving technique is backtracking, that consists in incrementally extending a partial 

solution that specifies consistent values for some of the variables, towards a complete solution, by 

repeatedly choosing a value for another variable consistent with the values in the current partial 

solution.

This is often not very effective for a few reasons:

• repeated failures due to the same reason;

• conflicting values of variables are not remembered;

• conflicts are not detected before they really occur.



Solving CSPs : constraint propagation

A better method for solving CSPs is based on removing inconsistent values from variables’ domains as 

new values are assigned. These consistency techniques were introduced first in the scene labelling 

problem (1975) and are based on the concept of constraint propagation.

CSP can be represented as a constraint graph where nodes correspond to variables and edges are 

labelled by constraints.

The most widely used consistency technique is called arc consistency (AC). It removes inconsistent 

values from variables’ domains based on binary constraints. In particular, the arc (Vi,Vj) is arc 

consistent if and only for every value x in the current domain of Vi which satisfies the constraints on Vi

there is some value y in the domain of Vj such that Vi=x and Vj=y is permitted by the binary constraint 

between Vi and Vj.

Other, more sophisticated algorithms have been introduced over the years, based on things like path 

consistency, lookahead, and look back techniques such as backjumping or backmarking.



N-Queens problem and constr. propag.



Solving CSPs : beyond systematic search

In most problems encountered in real-world applications systematic searches are unfeasible, even 

using the mentioned techniques.

There are three alternatives:

Construction heuristics: policies for choosing which variable to assign next and which available value 

to assign next based on the nature of the problem.

Local search: start with an unfeasible solution and use a repair metaphor to improve it. E.g. hill-

climbing or tabu search. LS usually has some form of randomisation to get out of local minima. 

Global search: e.g. genetic algorithms, look at the space of assignments as a whole.



Constraint Optimisation Problems

- COPs are even harder than CSPs.

- The most famous systematic algorithm is Branch and Bound.

- B&B needs a heuristic function that assigns a numerical value to a partial labelling. The value 

represents an underestimate (for minimisation) of the objective function for the best complete 

labelling obtainable from the partial labelling. Solutions are searched depth first like with 

backtracking, but as soon as a value is assigned to a variable, the value of heuristic function is 

computed. If it exceeds the bound, then the sub-tree under the current partial labelling is pruned. 

Initially, the bound is set to infinity and during the computation it records the value of best solution 

found so far.

- The efficiency of B&B is determined by two factors: the quality of the heuristic function and whether 

a good bound is found early.

- Again, systematic search not usually feasible in real problems, so a number of heuristic and 

metaheuristic techniques are the subject of much research.



Constraint Programming



Google or-tools and other solvers

Constraint programming is the study of computational systems based on constraints. 

The idea of constraint programming is to solve CSPs and COPs by just stating variables with their 

domains, and constraints (requirements) about the problem area.

Then letting a generalised solver find solution satisfying all the constraints.

This paradigm has been first incorporated as an extension to logic programming languages, originating 

Constraint Logic Programming, but adding some sort of constraint declaration extension to all sorts of 

languages of various paradigms.



“Constraint Programming represents 

one of the closest approaches 

computer science has yet made to the 

Holy Grail of programming: the user 

states the problem, the computer 

solves it.”

E. Freuder. 1996. In pursuit of the Holy Grail. ACM Computing Surveys 28, 4es, Article 63 (December 1996).

Eugene Freuder, 
Emeritus Professor of Computer Science 

at University College Cork



Google or-tools and other solvers

Tools available today include: 

• Or-tools

• IBM CPLEX

• Gecode

• Chocosolver

• ECLiPSe CLP

• JaCoP

• SICStus Prolog

• Oz

• MiniZinc and FlatZinc



N-Queens problem in or-tools



The reality of CP

Most real problems are subject to ulterior complications, and things aren’t easy as Freuder hoped: 

• soft constraints

• multi-objective optimisation

• infinite domains such as time

• complex discrete types, like intervals

• Modelling is actually very hard and different models determine how effective a search method or 

heuristic can be.



A case study: General Electric Turbines



General Electric – planning the tests

Tests were planned with an excel 

file (left)

Changes were very difficult to 

accommodate

There was no warranty of 

correctness

Trial and error and what-if 

scenarios were impossible

Operators were not able to 

optimise solutions, and a lot of 

time and resources were wasted



Testing process

Resources:
-Testbeds / Motors
-Gearboxes
-Cooler loops

Testing turbines : modelling the problem



Matching
Constraints

A parallel machines, offline, non-
preemptive multi-machine with 
processing sets scheduling problem 
with resource eligibility, release dates 
and due dates. (using Graham’s 
notation)

Testing turbines : modelling the problem



Stratagem

Already doing much better than 

humans and in use at GE for the 

past 4 years. 

Uses a mix of or-tools and 

problem-specific construction 

heuristics.

Two areas of intense research:

• Local search : problem of 

efficiently constructing 

neighbours of an assignment

• Global search : problem of 

constructing viable operators on 

an assignment



To know more 

Apt, Krzysztof (2003). Constraint Programming. Cambridge

Frühwirth & Abdennadher (2003). Essentials of Constraint Programming. Springer

Pinedo, Michael L. (2012). Scheduling. Theory, Algorithms, and Systems. Springer

Brucker, P & Knust, S. (2006). Complex Scheduling. Springer

Google or-tools: https://developers.google.com/optimization



Thanks.

@gabscali

gab@acm.org


